
Some figures I could gather from those and other (human)

sources say that 1.3k is an ok size for a 4k synth including a

complete song. Taking my gm.dls player and the few sound

effects from sprite-o-mat as a reference, all written in C++, I

was around 1k (~750 byte code, ~250 byte data). So it was

quite obvious that my 4k softsynth had to be somewhat in that

size range too, otherwise it would be of no big use if it con-

sumed too much space. This led almost immediately, to the

question of which language to use? I knew some people do

their 4k synths with C++ and some start with C++ and convert

to assembler afterwards and some simply start with assembler

code from scratch. I decided to go down the assembler-from-

scratch route, simply because it would give me more control

over the resulting instructions than any compiler could and be-

cause I thought it would be more fun.

Next thing was the structure of the synth itself. In my opinion,

you have two options:

- Use a fixed processing layout:

A fixed layout is something like you can find in Buzzic or Fux-

plux. Basically utilizing a fixed order and amount of sound

generating and processing units. I’d even call kb’s V2 a fixed

processing layout, though it’s not totally true. Each instrument

has the same number of units available (3 oscillators, 2 filters,

As some of you might have read in my contributions to ZINE

#12, the work on my 4k softsynth “4klang” started right after the

release of Sprite-o-mat. The key motivation was to never ever

again have to use those gm.dls samples, while still providing a

decent sound somehow with a compact representation. Apart

from the fact that the challenge to write a good 4k softsynth

was quite tempting from a coder’s perspective one particular

interesting aspect for me was that I would call myself neither a

good musician nor a synth expert. That coupled with the ambi-

tion to create one of the best 4k synths around was sort of my

initial motivation.

BY GOPHER OF ALCATRAZ

THE
DEVELOPMENT
OF THE 4KLANG
SOFTSYNTH

In the rest of this article I’ll try to describe the (evolved) concept

behind 4klang as well as the pros and cons that come with it.

Before actually starting to think about the code itself I took

some time to gather information on how other 4k synths work

(know your enemy). I had already written a synth before, some

sort of V2 clone, and I actually already tried to “port” it for use

in 4k intros once around 2005. But I miserably failed, it was sim-

ply too big. So despite knowing what units (oscillators, filters,

envelopes, LFO’s, delay lines, etc) are in a normal synths and

what’s basically needed to create sounds I still needed more

input, especially in terms of what design and features other 4k

synths use.

Some sources of my research and inspiration were:

Stoerfall Ost (http://www.pouet.net/prod.php?which=743)

Fuxplux (http://www.pouet.net/prod.php?which=13016)

V2 (http://www.pouet.net/prod.php?which=15073, http://www.

kebby.org)

http://in4k.untergrund.net

Also by the time of writing this article:

Buzzic (http://www.pouet.net/prod.php?which=48898)

And for general algorithms and stuff concerning digital audio

processing I can recommend: http://www.musicdsp.org

THE KEY MOTIVATION WAS TO
NEVER EVER AGAIN HAVE TO USE
THOSE GM.DLS SAMPLES

GATHERING INFORMATION

2 envelopes, 2 LFOs, etc.) and these units are given a

predefined order of processing. But you can enable/

disable units or flip the processing order at selected

stages and especially make use of the flexible modu-

lation routing mechanism allowing almost every unit’s

parameter to be modified by a modulator.

- Use a variable processing layout:

A variable layout is something like you can find in Sto-

erfall Ost, Gargaj’s .kklangzeug or in TBC’s synth. All use

a flexible sequence/tree like data structure for their

sound definition. This allows you to create complex

and varying sounds while still being compact. The only

thing missing in .kklangzeug is the possibility to have further

sound variation through modulations (e.g. the filter cutoff). But

one can overcome this restriction by including hardcoded os-

cillators into the filter (as pointed out in “ZINE #13: The making

of Candystall”).

Both types of layout have their pros and cons.

- A fixed layout will have the same number of parameters for

each instrument, making it less flexible on the one hand but

it may result in better compression due to similarity between

instruments and especially because you don’t need any ad-

ditional information about unit relationship and to which unit

a parameter belongs, since that is handled in the code. But

depending on the amount of units you provide, the code for

the fixed processing will grow quite easily. I guess that’s one

reason why synths using such a layout are mostly very limited

in their amount of units and thus in their possibilities and qual-

ity of sound. Anyway this is quite easy to code, just make one

big function that processes all units/parameters in the desired

order and that’s it.

- A variable layout is different on the code and data side. You

need to make sure you can define arbitrary unit sequences/

trees, thus you must store some sort of relationship data for the

units (who depends on whom) and find some way to make

sure you know which parameters belong to which unit in that

sequence/tree. This automatically will increase your data sec-

tion and additionally will force you to code some sort of virtual

machine to process your sequence/tree (at least I don’t see

any other way of doing it). Also a variable layout can make it

harder to define instruments for the musician, since you have

no “pattern” you must follow when creating instruments.

After giving it some thought for a while and especially being

influenced by the way the synth worked in Stoerfall Ost I de-

cided to go for the variable layout approach with the possi-

bility of having a flexible modulation mechanism as found in

V2, because modulations are what really makes for interesting

sounds (apart from effects like delay/reverb)

Every (subtractive) synthesizer needs the same basic units:

- waveform generator (sine, saw, square, noise, etc)

- filter (lowpass, highpass, bandpass, etc)

- envelope (attack, decay, sustain, release)

- fx (delay, etc)

And in general each synth creates waveforms at the start of

the signal processing pipeline, modifies those and finally out-

puts them.

So for an instrument definition having a sequence of units do-

ing these different parts seemed natural to me. Also it’s perfect

for the processing on the VM side, because you simply would

need to call one unit after another. The only problem is: how do

you handle the case where you need more than one signal at

a time, e.g. combining two or more waveforms, or multiplying

the final signal with the main envelope of the instrument? One

solution would have been to include more than one oscillator,

as well as the main envelope in the waveform generator unit

(as I know Gargaj and TBC do it that way today). But I didn’t

want to include the envelope in the waveform generator, since

I also planned to have it as a modulation source as well. Nei-

TH
E

4K
LA

N
G

 S
O

FT
SY

N
TH IMPLEMENTATION BASICS

TO PUT IT SIMPLY, I WANTED
EVERY UNIT TO BE LEAN

ther did I want to include more than one oscillator in

the waveform generator because it would need more

parameters to specify their properties which are poten-

tially not all needed for each instrument.

To put it simply, I wanted every unit to be lean; only

doing what it is was meant to do, nothing bloated, nor

a combination of different functionality. This finally led

me to the idea of a signal stack. Each unit in my synth

would operate on the stack, giving it the possibility to

access more than one signal at a time, while the units

themselves are just called in sequence.

Let me show you a simple example of a command

sequence operating on the signal stack:

1. envelope (puts the envelope signal on the stack)

2. oscillator (puts the oscillator signal on the stack, on top of

the envelope signal)

3. filter (filters the topmost stack signal, oscillator in this case)

4. mul (multiply envelope with filtered oscillator signal, store

to envelope signal, remove oscillator signal)

All that was needed to make this flexible were some small units

doing arithmetic operations on the signal stack (like add, mul,

etc). And since I planned using floating point signals along the

way and the FPU itself is using a stack I decided to make use

of that instead of manually managing a stack. This of course

meant I couldn’t ever have more than 8 signals on the stack

and going through all instruments in a song that way wouldn’t

have worked either. So I decided to use the stack only within

each instrument definition. Additionally I tried to limit the unit’s

internal FPU register usage, so that a stack overflow wouldn’t

occur that easily. In fact I managed to make each unit con-

sume no more than 3 FPU slots, so within an instrument defini-

tion it’s possible to keep 5 signals at a time. After the signal for

an instrument is processed it is stored in the instrument OUT

buffer and the stack is cleared.

The above example now looked like this:

1. envelope

2. oscillator

3. filter

4. mul

5. out (store the final signal to the result buffer in the instru-

ment and remove it from stack)

This would now be done for each instrument and finally, after

all instruments are done, a global stack would be processed

to gather, sum and output the combined signal to the sound-

buffer.

TH
E

4K
LA

N
G

 S
O

FT
SY

N
TH An example for the global stack:

1. accumulate (accumulate all instrument signals, put

summed signal on stack)

2. out (store to final output buffer, remove signal from stack)

This scheme proved to be straightforward especially consider-

ing the VM code. Since each instrument clears the FPU stack

in the end the next instrument can follow immediately. Which

means for the VM data all instrument instructions can be stored

in sequence; even the global instructions (which are effectively

another instrument stack).

For even further sound control I included an additional AUX

buffer in the instrument and gave the out unit 2 gain parame-

ters to adjust the amount of the signal that should be fed in the

respective buffer. The accumulation unit was then modified to

be able to select which of the buffer signals to collect and so

allowing it to process those 2 signals individually. That’s quite

handy to specify which instruments should be processed by a

global delay line or reverb and is similar to the way it’s done

in V2.

The global stack including a global delay:

1. accumulate (out) (accumulate all instrument out signals,

put summed signal on stack)

2. accumulate (aux) (accumulate all instrument aux signals,

put summed signal on stack)

3. delay (delay effect on the aux signal)

4. add (sum out and aux signals)

5. out (store to final output buffer, remove signal from

stack)

bytes, it may be that it fits their overall design better than mine.

Anyway, I tried those possibilities and decided to keep the byte

parameters and remapping code since it always gave me the

better results in the end; being slower in execution though. But

execution time is not as important as compression ratio and

final size of the code, since we’re talking about a 4k synth here.

Now instead of only typing numbers in my data section for the

VM instructions I created lots of defines which should make it

easier to build instruments via code since I had not started with

a GUI for the synth yet. The above instrument example then

looked like this in my assembler file:

GO4K_BEGIN_INSTDEF(String1)

 GO4K_ENV ATTAC(10),DECAY(64),SUSTAIN(103),RELEASE(8

 0),GAIN(50)

 GO4K_VCO FLAGS(PULSE),TRANSPOSE(0),DETUNE(8),COLO

 R(15),GAIN(57)

 GO4K_VCF VCFTYPE(LOWPASS), FREQUENCY(110), RESO

 NANCE(127)

 GO4K_FMUL

 GO4K_OUT

GO4K_END_INSTDEF

Quite readable I think and actually it almost felt like a sound

programming language. And just in case you wonder: Yes, the

first 4k songs using 4klang were created like that; writing VM

code with the use of those macros. Of course the songs were

not composed that way. Actually pOWL always composed the

songs with my V2 clone in Madtracker and I ported everything

by hand to 4klang as good as possible. That’s the way we did

it until Breakpoint 2008. After that I decided to finally wrap a

GUI around the synth core and also to make it a VSTi for easier

use in any host application the musician is happy with. I think

it was a good decision because I was not eager to also code

a buggy tracker and additionally the musician doesn’t have

to learn a new music tool completely from scratch. It’s already

enough to understand how to create instruments with the synth

plugin itself.

For the music information I decided to do it like most other 4k

synths, just using patterns of a certain length (16 is a good val-

ue, but it’s variable in 4klang) and using a list of pattern indices

for each instrument to store the sequence. The only difference

may be that I also added the possibility to have variable note

lengths through a special “Hold” value in the patterns. Another

option would have been to store some sort of delta encoded

stream information similar to V2, but I somehow felt it would be

TH
E

4K
LA

N
G

 S
O

FT
SY

N
TH

USING PATTERNS IS PRETTY
SIMPLE ON THE CODE SIDE AND
VERY COMPACT ON THE DATA SIDE

Now getting one sound sample for the whole synth

came down to simply sequentially processing one

large list of VM instructions!

Speaking of which, a VM instruction in the synth looks

like this:

 unit opcode (1 byte), unit data (0..* bytes)

Where unit opcode goes from 0 to MAX_UNITS (like envelope

= 0, oscillator = 1, ...), the amount of unit data depends on the

actual unit, e.g. the filter needs 3 bytes (type, cutoff and res-

onance), a mul instruction only needs the opcode. Also, as

you can see, I decided to store all parameters as bytes which

means I had to sacrifice some code to do the parameter map-

ping to floats for them.

I tried other possibilities like storing truncated floats or storing

indices to a float table. In fact the code got a lot smaller, but

eventually got overcompensated by the growth of the data

section. In “ZINE #13: The making of Candystall” it was stated

that using truncated floats was almost as compact as using

bigger in most cases but maybe I’ll give it a try some

day. Using patterns is pretty simple on the code side

and very compact on the data side. The only disadvan-

tage is that you can only store the information for one

note at a time for a certain instrument. This means that

chords need additional instruments of the same type

with different patterns. But hey, you just cannot have

everything; after all we’re still talking about 4k music.

And that’s pretty much the basic layout and technique

behind 4klang.

Side note: Go4k was the project name until I had a

chat with Helge/Haujobb the other day and he came

up with the idea to call the synth 4klang (thank you for that).

Now that I had a working synth base which was easily extend-

able by new units I could move on to the stuff that really makes

a good synth. I already mentioned that I wanted to have a flex-

ible modulation mechanism similar to kb’s V2, rather than hav-

ing some hardcoded oscillators here and there. My approach

was to implement a “Store” unit which basically just reads the

topmost signal from the signal stack and writes that to some

defined memory offset in the workspace of any unit in the cur-

rent stack. So I simply added modulation target members to

the unit structures and changed the code of the unit so that it

not only would use the parameter value from the VM code but

also add the value of its according modulation slot.

I think a small example will make it a bit clearer; I’ll show my

filter workspace definition here:

struc go4kVCF

;// copies from val struct

 .type resd 1

 .freq resd 1

 .res resd 1

;// work variables

 .low resd 1

 .high resd 1

 .band resd 1

;// modulation targets

 .fm resd 1

 .rm resd 1

 .size

endstruc

While processing the filter the first 3 slots contain the mapped

byte parameters from the VM instruction. The following 3 slots

are the work variables, the current state of the filter. I now added

the last 2 slots to the struct and instead of using only “freq” and

“res” to process the filter I then used “freq+fm” and “res+rm”.

So in the case I had a store command somewhere that writes

a value in one of those targets it would be added to the base

parameter accordingly. If nothing was stored to those targets

it just would use the base parameters (since the modulation

targets are 0 by default).

This way of storing the topmost signal from the stack to any-

where in the synth had some implicit benefits:

 » you can use whatever signal is on the stack at that mo-

ment (allowing FM synthesis e.g.)

 » you can combine (add, mul, ...) several signals before

storing the result to a modulation target (allowing more

advanced modulation signals)

 » you can do self-modulation (a unit stores its result back to

itself)

 » you can store to any other instrument stack or even the

global stack (cross-modulation or global modulation)

Especially the last point here is a really cool thing. Because it

means I could now have instruments modifying other instru-

ments. And even better, I could trigger when the modulation

should apply by playing a note for the modifying instrument.

And since instruments don’t have to produce audible output

(they just need to make sure the stack is cleared when they

are done) it can be considered some reduced way of auto-

mation. Therefore I decided to call such instruments “Control

TH
E

4K
LA

N
G

 S
O

FT
SY

N
TH

MODULATIONS ARE THE KEY

instruments”. The only thing I had to take care of when

using modulations was, that if the modulation signal

was created e.g. by an own envelope somewhere in

the stack, I had to remove that signal after the store

command, because otherwise it would have affected

the audible signal. That’s why I added another unit

which simply pops the topmost signal from the signal

stack. And yet again I had one more unit basically do-

ing one FPU instruction (fstp st0, st0), so I decided to

combine all of those single arithmetic units like pop,

add, mul, etc into one arithmetic unit with one param-

eter specifying the actual operation to perform.

Having that all was already great: only one important

part was missing, the infamous delay line. A simple feedback

delay was the way to go in the first version of 4klang.

Of course 4klang hasn’t been unmodified since the first ver-

sion. Actually I’m counting the 4th major incarnation right now.

Some of the added features were done after pOWL made a

request; some of them were included because I heard the re-

sults of some other synths using that stuff and some of them

because I just wanted them to be in the synth. Basically all my

4k’s since sprite-o-mat used one new version of 4klang and

you can actually hear the progress if you listen to the songs in

chronological order. The most important iteration steps or ad-

ditions were the following:

 » adding the possibility to have 2x polyphony per instru-

ment to reduce note on/off clicks (but increasing process-

ing time by a factor of ~1.5)

 » extending the delay line to support reverb (mono, as all

sounds have been until now)

 » splitting the VM instructions into separate streams for op-

code and data and a complete rewrite of the VM/player

(for better packing ratio)

 » creating the VSTi plugin so I wouldn’t have to manually

create/port instruments any longer

 » making everything stereo at the end of each instrument,

accomplished with a “Panning” unit before the output.

(after I realized how much stereo adds to the richness of

sound)

 » extending the delay line to enable Karplus-Strong like

plucked string sounds

And though 4klang was step by step extended by features it

was somehow possible to increase the packing ratio and de-

crease the overall file size in the end. One thing that addition-

ally helped was to wrap new features (and other parts of the

code) in preprocessor define blocks, so that you can easily

exclude code parts you don’t need for a certain song.

The current version which includes the VSTi plugin is something

I’d consider to be a final version. As with each tool it takes some

time to make full use of its potential, so I don’t see the urge to

add new stuff at the moment, since the VSTi has been avail-

able to our musicians for only some months now. Nevertheless

I will for sure include more stuff if it’s needed or requested for

some production (e.g. a compressor unit which isn’t included

by now), and now and then try to cut off even more bytes.

The weak part of 4klang is its execution time. There are two

main reasons for this. First is the parameter mapping which is

done each time a unit is processed. The second point is that

for each sound sample the complete VM instruction sequence

will be processed, resulting in many function calls per sample,

TH
E

4K
LA

N
G

 S
O

FT
SY

N
TH

ITERATIONS

CONCLUSION

creating quite some call overhead. Gargaj and TBC

use another approach I think, they process one com-

plete buffer with all samples for each unit, resulting in

very few calls needed overall. But I don’t see a way

of integrating that concept in 4klang, since it clashes

with the modulation concept (especially with control

instruments and self-modulation). Also the polyphony

issue is nothing I really found a good solution for up to

now. At the moment when the synth polyphony is set to

2 I simply have 2 voices per instrument which both are

always processed. The player just inserts notes in one

of the two voices (alternating) and then processes 2

voices per instrument, which just doubles the work for

instruments also for those which don’t need polypho-

ny. I added some early outs in the units where possible, but still

it increases execution or pre-calculation time a lot. But you get

well along most of the time with 1x polyphony anyway.

Now to finally give you some numbers about the size, these are

the code/data statistics of our NVISON 4k kevinspacy which

used basically the newest version of 4klang.

Sound Init Code: 35 bytes

Sound Init Data: 25 bytes

Synth Code: 730 bytes

Synth Data: 50 bytes

Pattern Data: 230 bytes

Instrument Data: 250 bytes

Sum: 1320 bytes

So a total of 1320 compressed bytes were needed to have 2:30

minutes of sound in that intro including sound init. Of course

the synth only used the really necessary units and modulation

possibilities, including all the features the synth code would

be ~860 bytes instead, so 1450 bytes total. But I doubt we’ll

ever manage to include all options in one song, so that’s only

the theoretical upper bound. All of our 4k’s since sprite-o-mat

was utilizing 4klang in one of its versions and each consumed

roughly around 750 bytes for the synth code. So I think this is a

good empirical value of what to expect.

Comparing those sizes above with my gm.dls player from

sprite-o-mat I would say it’s a success. The size of the code is

almost equal, only 4klang needs more space for the data. But

that was something I was expecting anyway, and additionally

the song from sprite-o-mat was really simple in structure, used

very few patterns and is almost 1 minute shorter than the kevin-

spacy soundtrack.

So all in all 4klang is roughly consuming those initially men-

tioned 1.3k for a 4k synth. Keeping it within this limit is one of the

main tasks for the musician, since it heavily depends on the

amount and complexity of the instruments and the repetitive-

ness of the song. The more similar the instruments or the song

patterns are, the better the packing ratio will be, so in the end

the main problem will always be to compose a catchy song

with cool instruments which compresses like hell.

And that’s one reason why I chose to make the GUI for 4klang

just the way it is now. It’s not hiding any complexity from the

musician, which makes it a bit more “coder-esque” to define

instruments, but on the other hand also shows the musician

what his patch data will look like in the executable later on

and what units he actually included as well as their param-

eters.

Providing any form of building blocks, which would hide the

complexity of what’s going on underneath would only lead to

the musician often/always using those things without thinking

about what he actually wants to achieve and how to achieve

it with the available base units. But hey, why should only the

coder have to think about getting things small.

TH
E

4K
LA

N
G

 S
O

FT
SY

N
TH

IN THE END THE MAIN PROBLEM
WILL ALWAYS BE TO COMPOSE
A CATCHY SONG WITH
COOL INSTRUMENTS WHICH
COMPRESSES LIKE HELL

The work on 4klang up to its current state took over

a year and I must say I really enjoyed every minute,

even the hard ones. And without the help and efforts of

pOWL it would certainly not be what it is now (one fea-

ture that would be missing is the “Panic” button!). But

since it’s in a state now finally where I can dare to un-

leash it to the world, you can find the complete 4klang

package (VSTi + example instruments/songs, example

c++ project) here in ZINE #14.

If you have read this article until here I hope you al-

ready got a good overview on how things work, but I

still recommend having a look at the readme.txt and

especially the examples to get a feeling for it.

And that’s about it for this article. Thanks for reading, have fun

trying out the VSTi, creating songs and perhaps using it in a 4k.

I’m looking forward to it.

For further questions, discussion or feedback: do feel free to

drop me a mail (gopherAThazard-designsDOTde) or catch me

on IRC.

P.S.: Quote from ZINE #13: The making of Candystall: “Letting

tone-deaf coders take control over the development of a syn-

thesizer is a definite recipe for disaster.”

Actually it seemed to work quite well ;)
FINAL WORDS

TH
E

4K
LA

N
G

 S
O

FT
SY

N
TH

